Paper by Erik D. Demaine

Reference:
Erik D. Demaine, “Folding and Unfolding”, PhD thesis, Department of Computer Science, University of Waterloo, 2001.

Abstract:
The results of this thesis concern folding of one-dimensional objects in two dimensions: planar linkages. More precisely, a planar linkage consists of a collection of rigid bars (line segments) connected at their endpoints. Foldings of such a linkage must preserve the connections at endpoints, preserve the bar lengths, and (in our context) prevent bars from crossing. The main result of this thesis is that a planar linkage forming a collection of polygonal arcs and cycles can be folded so that all outermost arcs (not enclosed by other cycles) become straight and all outermost cycles become convex. A complementary result of this thesis is that once a cycle becomes convex, it can be folded into any other convex cycle with the same counterclockwise sequence of bar lengths. Together, these results show that the configuration space of all possible foldings of a planar arc or cycle linkage is connected.

These results fall into the broader context of folding and unfolding k-dimensional objects in n-dimensional space, k ≤ n. Another contribution of this thesis is a survey of research in this field. The survey revolves around three principal aspects that have received extensive study: linkages in arbitrary dimensions (folding one-dimensional objects in two or more dimensions, including protein folding), paper folding (normally, folding two-dimensional objects in three dimensions), and folding and unfolding polyhedra (two-dimensional objects embedded in three-dimensional space).

Length:
The thesis is 97 pages.

Availability:
The thesis is available in PostScript (2117k), gzipped PostScript (656k), and PDF (718k).
See information on file formats.
[Google Scholar search]

Related webpages:
Folding and Unfolding


See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated December 28, 2024 by Erik Demaine.